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OBJECTIVES

After studying this chapter, a

student should:

1. understand the central-
force problem, including
the angular momentum
properties of a central-
force system;,

2. be able to solve problems

related to the angular
momentum of a single
particle;

3. understand the solution of

the Schrédinger equation
for the hydrogen atom and
be able to solve problems
related to it;

4. be familiar with the

principal properties of the
hydrogenlike orbitals and
be able to solve problems
related to them;

| 5. understand the possible

states for multielectron
atoms and be able to
assign term symbols
for different electron
configurations of
multielectron atoms.

The Electronic States of Atoms.
I. The Hydrogen Atom and the
Simple Orbital Approximation
for Multielectron Atoms

PRINCIPAL FACTS AND IDEAS

1.

The Schrodinger equation for the hydrogen atom is an example of the
“central-force problem,” in which the potential energy depends only on the
distance between the two particles that make up the system.

In the central-force problem, the angular momentum of the system can have
definite values if the system is in a state corresponding to an energy
eigenfunction.

The Schrédinger equation for the hydrogen atom can be solved exactly,
giving electronic wave functions called orbitals.

Electrons have intrinsic (spin) angular momentum in addition to the angular
momentum of orbital motion. Spin orbitals describe both space and spin
behavior.

. Bach electron in a multielectron atom occupies a hydrogenlike spin orbital if

the simple orbital approximation is applied.

The wave function for a multielectron atom must be antisymmetric. That is,
the wave function changes sign if the coordinates of two electrons are
exchanged.

In an orbital wave function, every electron must occupy a different spin
orbital (the Pauli exclusion principle).

. The total orbital angular momentum and the total spin angular momentum

correspond to the same pattern as other angular momenta, and are used to
characterize the energy levels of multielectron atoms.

573
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Figure 16.1. The System Consisting
of a Nucleus and an Electron. This
figure shows the cartesian coordinates
of both particles, with a line segment
drawn between the particles.

The Hydrogen Atom and the Central Force System.
Angular Momentum

A hydrogen atom consists of a single electron with charge —e and a nucleus containing
a single proton with charge ¢, as depicted in Figure 16.1. The Hamiltonian operator for
this system contains the potential energy function that corresponds to Coulomb’s law

o2

V(r)=—

(16.1-1)
dmeyr
where &, is the permittivity of the vacuum and where r is the distance setween the
particles. The hydrogen atom is a member of a class of systems called central-force
systems, which consist of two particles separated by a distance r with a potential energy
function ¥” that depends only on r. The Schrédinger equation will be expressed in
spherical polar coordinates, and the variables can be separated in this coordinate
system. The solution for the 0 and ¢ factors is the same for any central-force system.
The results of this part will give us all of the information that can be obtained about the
angular momentum of the hydrogen atom or any other central-force system. We will
then proceed to the solution for the r factor, which is specific to the hydrogen atom.
To construct the Hamiltonian operator for any system we write the classical
Hamiltonian function in cartesian coordinates and then make the replacements
analogous to Eq. (15.3-5) to form the Hamiltonian operator. The cartesian coordinates
of the nucleus are denoted by x,, y,, and z,, and the cartesian coordinates of the electron
are denoted by x,, )., and z, . However, the variables cannot be separatec. with these
coordinates. We transform to relative coordinates and center-of-mass coordinates. The
relative coordinates: x, y and z are

xX=x, —x, (16.1-2a)
Y=y, =¥ (16.1-2b)
=2z, ~Z, (le.1-2¢)

The potential energy depends on the distance between the particles, whick is
r:(x2+}12+22)w2

The coordinates of the center of mass are

(16.1-3)

mr‘ xﬁ" + mnxn

X = W (16.1-4a)
Mm,Y. +m.y
Y=g v 16.1-4
v, ( b)
Z:%ﬁ (16.1-4c)
where the sum of the masses is denoted by M:
M=m, +m, (16.1-5)
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The classical Hamiltonian contains the kinetic energy in terms of momentum compo-
nents. The kinetic energy in terms of the velocity of the center of mass «nd the relative
velocity is given in Eq. (D-26) of Appendix D:

M
Jf’"—.?(VXZ-&-Vf+V;2)+§(vf+t{3+vf) (16.1-6)

where V and v are the velocity of the center of mass and the reative velocity,

respectively. The reduced mass is denoted by
ml]m/
U=— (16.1-7)

My +m,

The momenta conjugate to the center-of-mass coordinates X, ¥, and Z are

P =MV, P, =MV, P, = MV, (16.1-8a)
The momenta conjugate to the relative coordinates x, y, and z are
Pe=MUy Py =Wy P = L (16.1-8b)
The classical Hamiltonian function is
1 1 .
Hcl:M(Pf+P§+Pf)+;(pf+}?_,%+pf)+?‘(r) (16.1-9)

The Hamiltonian operator is obtained by the usual replacements for cartesian momen-
tum components as in Eq. (15.3-5):

o B (R R BN BR R FN
TTom\ax? T a2 Taz2) 2u\a T 92 a2 ’
2 sz
:-mvg—ﬂVf-}—“f/"(r) (16.1-10)

where V? is the Laplacian operator defined in Eq. (14.4-25) and Eq. (B-40).
The first term in the Hamiltonian operator is the center-of-mass Hamiltonian:

2

ﬁc=—2—ﬂ;—4v§ (16.1-11)
and the other two terms are the relative Hamiltonian.
g B g,
Hr:_ﬂvr.i_f(r) (16.1-12)
The time@lndent Schrédinger equation is
(A +H)Y =E¥ (16.1-13)
This equation can be solved by the separation of variables. We assume the trial function
Y=y (XY 2Wxyz) (16.1-14)

In previous chapters ¥ has represented a time-dependent wave function. We will use
both ¥ and  for coordinate wave functions in the next several chapters, usually using
¥ for wave functions of more than one particle.

By separation of variables, Eq. (16.1-14) leads to the two equations

H, = E, (16.1-15)

Hy = Ey (16.1-16)
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with the energy eigenvalue E,

E=E, +E, (16.1-17)

Exercise 16.1
Carry out the steps to obtain Eq. (16.1-15)«(16.1-17).

Equation (16.1-15) for the center of mass is the same as the Schridinger equation for
a free particle. We can transcribe the energy eigenfunctions and energy eigenvalues
from Chapter 14 with replacement of the symbol for the mass by M. We will return 1o
the motion of the center of mass in Chapter 19 and will then also consider the
possibility that the atom or molecule is contained in a box.

Solution of the Relative Schrédinger Equation

Equation (16.1-16) is the Schrodinger equation for the relative motion. It is mathema-
tically equivalent to the problem of the motion of a particle of mass moving at
distance r from a fixed origin under the effect of the potential energy ¥ (r) (see
Appendix D). Figure 16.2 depicts this equivalence. The vector frora the nucleus.
(labeled n) to the electron (labeled ¢) in Figure 16.2a is equal to the vector from a fixed
origin to the fictitious particle of mass y in Figure 16.2b. If one of the perticles is much
heavier than the other, as is the case in the hydrogen atom, the reduced mass is nearly
equal to the mass of the lighter object, the center of mass is much closer to the heavier
particle than to the other, and the motion is nearly the same as thouzh the heavier
particle were stationary with the lighter particle moving around it.

*Exercise 16.2
The mass of the electron is 9.10939x 10™>'kg and the mass of the proton is
1.672623 x 107 kg,

a. Caleulate the ratio of the reduced mass of the hydrogen atom to the mass o the electron.
b. For a hydrogen atom with the electron at a distance 1.000 x 10™'"m from the nucleus. find

Particle of mass m, Fictitious particle of
Mass [ = m M —vg I\éim&r ?f
Vector of Ry 0y frorgu fixed
:ength A origin to
Tomnto e / fictitious
particle of
mass U
‘\Center of mass \F' od ol
ix ig
-~ Particle of mass m,

(a) (b)

Figure 16.2. Figure to lliustrate the Equivalence between the Motion of a Paricle of Mass n
around a Fixed Center and the Relative Motion of Two Particles (a) The actual two-particle
system. (b) The fictitious particle of mass p. The two vectors move in exactly the same way.
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Figure 16.3. Spherical Polar Coordi-
nates. These coordinates are used to
simplify the solution of the Schrddinger
equation.

the distance from the center of mass to the nucleus and to the electron. Hint: Assume that the
particles are temporarily on the x axis.

We now transform the relative Schrodinger equation to spherical polar zoordinates, in
which r is one of the coordinates. These coordinates are shown in Figure 16.3. The
expression for the Laplacian operator in spherical polar coordinates in Eq. (B-42) of
Appendix B gives the relative Schrodinger equation:

. w2 [ (o0 1 a/. W 1L #y
_ 9(,0¢ o i 2| g9

A =-35 [a( ar)*sin(ﬂ) o (S‘““” 89)+sm2w agt. T Y
= E (16.1-18)

Comparison of this equation with Eq. (15.3-11) shows that the operator for the square
of the angular momentum is contained in the Hamiltonian operator:

A2 9 [ L0y |
- = — — L  d E 16.1-19

2urt or (r ar) ¥ 2ur? VA =Ey ( )
This equation can be solved by another separation of variables. We assume the trial
solution

W(r, 8, ¢) = R(r)Y(0, ¢) (16.1-20)

The separation of variables is a little more difficult in this case than in previous cases
since the coordinates do not occur only in separate terms in the Hamiltonian operator.
We have to do it in two steps.

Since the operator L? does not contain 7, substitution of the trial so ution into Eq.
(16.1-19) gives

Wl 1d/[,dR
= RI*Y |+ (v - = Ak
2#[ rzdr( d)+ }+( EJRY =10 (16.1-21)

We multiply this equation by 2ur? /42 and divide by RY. This separates r from the other
variables, giving

1 d dR 2;”'2
L (L Y —E) 4=l = 122
Ra‘r( dr) Bt ey . (el)

The Angular Factors in the Wave Function

The final term on the left-hand side of Eq. (16.1-22) contains no r and the other terms
contain no f or ¢. The last term must be a constant function of & and ¢, which we set
equal to the constant K. Multiplication by #?Y gives the equation

2y = B3KY (16.1-23)

which we can solve for the angular factor ¥, which is also the eigenfunc:ion of 2. The
factor R in the eigenfunction will be different for different potential energy functions,
but the factor ¥ will be the same for every potential energy function ¥~ that depends
only on r.

Equation (16.1-23) can be written

LI oY 1 @Y
_—ﬁ2|is n(0) 39 (Sln( ) ) + Sinl(g) 874521| =HKY (16.1-24)
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To carry out a second separation for the variables 8 and ¢, we assume the trial solution
Y = 0(0)d(d) (16.1-25)

Substlmnon into Eq. (16.1-24) followed by division by ©(6)®(¢) and multiplication by
sin®(0) gives

sin(0) d [ dO 1 &0 3 :
— il —— ==K 0 -2
o 40 (sm(@) 70 +(I) e sin“(0) (16.1-26)
The last term on the left-hand side of this equation depends only on ¢, so it must be a

constant function of ¢, which we call —m?. If this choice for the constant is made, m
will turn out to be a real integer. Multiplication by ® gives the equation

d*® B

;'_(ﬁ;i =

Except for the symbols used, Eq. (16.1-27) is exactly the same as several equations
already encountered, and its general solution can be written as in Eq. (14.5-21):

D = 4™ 4 Be~im® (16.1-28)

where 4 and B are constants. The version of the general solution with sine and cosine
functions could also have been used.

A wave function must be continuous. The variable ¢ ranges from 0 to 27 radians.
Since ¢ = 0 and ¢ = 2n refer to the same location for given values of » and 0,

0) = D2n) (16.1-29)

This condition is satisfied only if m is real and equal to an integer.

—m*® (16.1-27)

Exercise 16.3
Use the identity

€™ = cos(mep) + i sin(me)

to show that m is real and equal to an integer.

There are two standard forms of the function in Eq. (16.1-28). For the first form, we
choose the values so that ® is an eigenfunction of L,, given by Eq. (15.3-10):
A0
L, =—— -3
<=7 (16.1-30)
We operate on @ with fL::
A h . _—
Lo== (imAe™ — imBe~™%) (16.1-31)

We have an eigenfunction ofL with eigenvalue %im if B is chosen to equal zero, or an
eigenfunction of L with eigenvalue —Am if 4 is chosen to equal zero. It can be shown
that [? and L commute with each other and with /., so that these three operators can
have a set of common eigenfunctions. It is sometimes useful to have wave functions that
are eigenfunctions of L.

Exercise 16.4
Show that A,, [2, and L, all commute.
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The equation is named for Adrien-
Marie Legendre, 1752—1833, a
famous French mathematician.

With B = 0, the normalized @ function is

cD:(Dm:Le""?’ (16.1-32)

V2

where we label the members of the set of functions with the quantum number .
For the second standard form the constants 4 and B are chosen so that @ is a real
function. If 4 and B are equal,

O = (Dm_r — A(el'md) =5 e—g’,ri'.b) =24 COS(.’TI(}’))

In normalized form,

Do %ces(mqﬁ) (m#0) (16.1-33)
If B = —A, then
=0, = A(e™ — ™) = 2i4 sin(m¢)
In normalized form,
®,, = —l—sin(mqb) (m#0) (16.1-34)

N

where the values of 4 and B are chosen for normalization. The complex @ functions are
eigenfunctions of the L, operator. The real functions are not eigenfunctions of the L_
operator if m # 0, but sometimes it is convenient to have real wave functions.

Exercise 16.5
Show that @, and @, are not eigenfunctions of i: for m # 0.

After replacement of the constant term by —m? and multiplication by ©, Eq.
(16.1-26) becomes an equation that can be solved for the ® function:

sin(())% (sin(())%) —m*@ + K sin’()© =0 (16.1-35)

This equation can be transformed into the associated Legendre equation by a change
of variables:

y = cos(0), P(y) = ©(0) (l6.1-36)

The associated Legendre equation and its solutions are given in Appendix F. The
solutions are called associated Legendre functions, and are derivatives of polynomials
known as Legendre polynomials.

For a solution to exist that obeys the relevant boundary conditions, the constant X
must be equal to /(/ + 1) where / is an integer at least as large as |m|. There is one
solution for each set of values of the two quantum numbers / and m:

6(9) =®:’m((}) (161-27)
The solutions are the same for a given value of m and its negative:

®Im(9) = Gf.—}n(f}) ( 1() I-BSI
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where we insert a comma to avoid confusing two subscripts having values / and —m
with a single subscript having a value equal to (/ — m).

The ¥ functions are called spherical harmonic functions. Each one is a product of a
©,,(0) function and a ®,,(¢) function having the same value of m as the @ function

Y = Y.fm (6! ¢') = ®|'m(())q)rn(¢’)

Table 16.1 gives the normalized spherical harmonic functions for / = 0, /=1, and
[ = 2. Additional functions can be derived from formulas in Appendix F.

Table 16.1. Spherical harmonic functions
U'/,'m((), fib) = ®,’n!(e)®m(¢)

Complex @ functions, eigenfunctions of I,

l
On() = —== &

Real @ functions, not necessarily eigenfunctions of i:

®,:(9) = —= cosime)

-
D, () = % sin(me)
® functions
V2
BOg(0) = 5

©,(0) = ? cos(f)

©,,(0) = ®l.ml(9) = ‘? sin(0)

BO4(0) = @ (3 cos*(0) — 1)

1
05,(0) =0, _,(0) = ? sin(0) cos(f)

15 i3
O5,(0) = 0, _,(6) = g sin®(6)

Additional © functions can be obtained from Appendix F

Angular Momentum Values

The spherical harmonic functions, ¥,,,(6, ¢), are eigenfunctions of the operator for the
square of the angular momentum with eigenvalue 42K, as in Eq. (16.1-23). The fact that
K must equal /(/ 4 1) where / is a nonnegative integer gives us the eigenvalues of the
square of the angular momentum:

LY =120,,0, = #I(0+ 1)0,0, (1=0,12,..) (16.1-39)
The square of the angular momentum takes on the values

=0 EonRelents (1052 oppZ (16.1-40)



16.1  The Hydrogen Atom and the Central Force System. Angular Momentum 581

Figure 16.4. Cones of Possible An-
gular Momentum Directions for
/=2 These cones are similar to the
cones of precession of a gyroscope,
and represent possible directions for
the angular momentum vector. The z
component is arbitrarily chosen as the
one component that can have a definite
value.

so that the magnitude of the angular momentum takes on the values
L=|L|=0, 2h, 6#, 12k, /204,... (16.1-41)

Compare these mathematically generated values with the assumed values 7.
2%, 3A, ..., in the Bohr theory of the hydrogen atom. Not only is the origin of the
quantization different, but the values are different from those of the Bohr theory. The
Bohr theory gave the correct value of the energy of the hydrogen atom, but not of the
angular momentum. .

The function @,, in Eq. (16.1-32) is an eigenfunction of L, with eigenvalue #im, so
that ¥}, is also an eigenfunction:

LYy = 0,00, =0,ind,  (m=0,+1,...,%]) (16.1-42)
The possible values of L, are
Lo = mbiss 00t i 08, 3h 0 o L Ik (16.1-43)

The magnitude of the angular momentum and the z component can simultaneously
have predictable values. In order to specify completely the direction of the angular
momentum vector, values of L, and L, would have to be specified as well as L..
However, Lx, L“ and L do not commute with each other, so all three of these opcratou
cannot have a full set of common eigenfunctions. Only one component of the angular
momentum can have a predictable value for the full set of states, and the exact direction
of the angular momentum vector cannot be determined.

Exercise 16.6

a. Use Eq. (15.4-24) and the expression for the commutator [[:,‘,, i‘,] in Problem 15.36 to obtain
an uncertainty relation for L, and L,. As the wave function in the integral, use the spherical
harmonic function ;. '

b. Repeat part (a) using the spherical harmonic function Yy,. Comment on your result.

Figure 16.4 depicts the case that / = 2, for which m can take on the values 2, 1, 0.
—1, and —2. The magnitude of L is /6% = 2.44954, and the possible values of L. are
2h, #, 0, =k, and —2#. The angular momentum vector can point anywhere on the five
cones drawn in the figure. If the wave function is known to correspond to particular
values of / and m, then it is known which cone applies, but the direction on that cone is
not known. For any values of /, there are 2/ 4+ | cones, one for each possible value of 1.
Notice the similarity between each cone on Figure 16.4 and the cone of directions
around which a gyroscope axis precesses, as shown in Figure D-3 of Appendix D.

There is nothing unique about the z direction. One could choose L, or L, as a
member of a set of commuting observables instead ofL In that event, the O funcnom
would be different, and would correspond to cones in Figure 16.4 that would be
oriented around either the x axis or the y axis. We choose L, since its operator is simpler
in spherical polar coordinates than those of the other components.
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16.2

This equation is named for Edmund
Laguerre, 1834—1866, a famous
French mathematician who solved the
equation.

*Exercise 16.7

Transform the expression for ®,,®,, to cartesian coordinates. Show that this function is an
eigenfunction of the operator Z, and find its eigenvalue.

The Wave Functions of the Hydrogen Atom

In Section 16.1, we wrote the energy eigenfunction for any central-force system as
¥(r, 0, ¢) = R(r) Y1, (6, ¢) = R(r)®,,,(0)D,,(¢)) (16.2-1)

The spherical harmonic functions Y},,(6, ¢) = ©,,(6)®,,(¢) are the same functions for
any central-force problem. The R function (the radial factor) is different for each
choice of the potential energy function ¥(r). We replace L2Y by #2/(/ + 1)Y in Eq.
(16.1-22), according to Eq. (16.1-39) and multiply the resulting equation by R to obtain
the differential equation for R:

d dRr 2ur?

—— (P =) +=- (¥ —ER+I(+ R = 16.2-2

d,-(er’ﬁz( ER+1(1+ DR = 0 (162:2)
where we now omit the subscript r from the symbol for the relative energy. For the
hydrogen atom, ¥7(r) is given by the expression in Eq. (16.1-1). Expanding the
derivative term into two terms gives

d’R dR 2 e?
2 .
1= =t ——— | E4+—— R+ I+ 1)R=0 16.2-3)
" 2 dr  h? ( + 4m?0r) Fil4 L : ’

We make the following substitutions:
2uE e?

2 H H
=—— = i =72 16.2-4
#2 dmeyah’ £ S0 ( }

The resulting equation is divided by p?, giving an equation that is known as the
associated Laguerre equation:
d°R 2dR R fR R
—t—-——=—+—=ll+1)==0 16.2-5
a’p2+pdp 4+p (+)p2 ( )

where we use the letter R for the function of p that is equal to R(r).

Exercise 16.8
Carry out the manipulations to obtain Eq. (16.2-5) from Eq. (16.2-3).

The solution is written as

R(p) = G(p)e /> (16.2-6)
where G(p) is a power series
o0 N
Glp) =Y app’ (16.2-7)
J=0
with constant coefficients a,, ay, a3, ... . The solution of the equation, which we will

not discuss, is reduced to the problem of determining these coefficients.
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The Hydrogen Atom Energy Levels

As with the series in the harmonic oscillator solution, the series in Eq. (16.2-7) must
terminate after a finite number of terms in order to keep the wave function from
becoming infinite for large values of p, violating our boundary conditions.' The
termination requires that the parameter f in Eq. (16.2-4) is equal to an integer n,
which must be at least as large as / + 1. The minimum value of n is unity, and this value
occurs only for / = 0. Solving the second equality in Eq. (16.2-4) for %, we obtain

pe?

e T 16.2-8
* 4neghin ( )
From the first relation in Eq. (16.2-4) , the energy is quantized, with a value determined
by the quantum number n:

v 4
g P it SN T (16.2-9)
2 2(4meyfin)

The energy expression in Eq. (16.2-9) is identical with that of the Bohr theory. As in
the case of the particle in a box and the harmonic oscillator, the energy is quantized by
the nature of the Schrédinger equation and its boundary conditions, and not by arbitrary
assumption as in the Bohr theory. These negative values of the energy eigenvalue £
correspond to bound states, in which the system does not have sufficient relative
energy for the electron to escape from the nucleus. There are also non-bound states
called scattering states in which the energy is positive and in which the electron moves
toward the nucleus, passes it, and continues on its way. We will not discuss these states,
which do not have quantized energy values.?

Exercise 16.9

Substitute the values of the constants into Eq. (16.2-9) to show that the energy of relative motion
of a hydrogen atom can take on the values

_2.1787x 10787 13.60eV

E=E, = n2 )

(16.2-10)

where | eV (electronvolt) is the energy required to move one electron through an electric potential
difference of 1 volt, equal to 1.6022 x 107127

The parameter a is the same as the radius of the smallest orbit in the Bohr theory of
the hydrogen atom in Eq. (14.3-14):

#itdme, —11 A
a4 =———= 152947 x 107" ' m = 52.947 pm = 0.52947 A (16.2-11)

"Frank L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York, 1968, pp. I51ff.

2H. A. Bethe and E. E, Salpeter, Quantum Mechanics of One- and Two-Electron Systems, Plenum, New
York, 1977, pp. 211, pp. 32fT.
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where A represents the angstrom unit, 10~ '"m. When we express the energy in terms
of this parameter, we get

H2d 2
s 2u B 2(dme)an?

Exercise 16.10
Verify Egs. (16.2-11) and (16.2-12).

In the (fictitious) limit that the nucleus is infinitely heavy compared to the electron,
the electron moves about the stationary nucleus, and the reduced mass becomes

lim g= lim (M—) =m, (16.2-13)

my— o0 my—00 \ M, +mn
where m, is the mass of the electron. Equation (16.2-11) becomes

fitdne,

m,e?

lim a =ay = =529198 x 107" m (16.2-14)

my— 00

For ordinary purposes, the distinction between relative motion of the nucleus and
electron about their center of mass and electronic motion about a stationary nucleus is
numerically unimportant, because the nucleus is so much more massive than the
electron. We usually refer to the relative motion as electronic motion.

*Exercise 16.11

Calculate the percentage error in the hydrogen atom Bohr radius and in the hydrogen atom energy
introduced by replacing the reduced mass by the mass of the electron.

The rules that the quantum numbers obey can be restated:

n=k 23, . (16.2-15a)
[=0,1,2,....n—1 (16.2-15b)
U P M ) (16.2-15¢)

The quantum number » is called the principal quantum number. The quantum
number / has been called the azimuthal quantum number, but could also be called the
angular momentum quantum number. The quantum number m has been called the
magnetic quantum number, but could also be called the angular momentum
projection quantum number. Since the energy eigenvalue depends only on the
value of the principal quantum number, the energy levels are degenerate except for
the n =1 level.
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EXAMPLE 16.1

Find an expression for the degeneracy of the hydrogen atom energy levels.

Solution
For a given value of n, the possible values of / range from 0 to n — 1. For a given value of /,
the values of m range from —/ to /. The number of possible values of m for a given value of
!'is 2/ + 1, since m can have any of / positive values, any of / negative values, or can be
equal to zero. The degeneracy g, is

vk Fiimmi] 2

n—1
go= Y@+ =2 tn

(16.2-16)
=0 2

where we have used the fact that the sum of a set of successive integers is the mean of the
first and the last times the number of members of the set (a fact that Gauss reportedly
discovered when he was seven years old).

Figure 16.5 shows the energy level diagram for the first few bound-state electronic
energy levels of a hydrogen atom. Each state is represented by a horizontal line scgment
at the appropriate height for its energy level. There is also a continuous spectrum ot
unbound states of positive energy. The characteristic pattern for the degeneracies of the
bound states is that increasing the value of n by unity makes one more value of /
available while increasing the value of / by unity makes two more values of 1 available

The Radial Factor of the Hydrogen Atom Wave Functions

The polynomial G in Eq. (16.2-6) is expressed as a function of p, which is proportional
to . From Eqs. (16.2-4), (16.2-8) and (16.2-11),
2r
& (16.2-17)
na
These polynomials are related to the associated Laguerre functions. Appendix F
describes these functions and the Laguerre polynomials of which they are derivanves
and gives formulas for generating the polynomials. There is a different R factor for cach
set of values of the quantum numbers »# and /. Table 16.2 gives the R funcuons for
n =1, 2, and 3, and others can be written from the formulas for associated Lagucrre

Continuum of states functions given in Appendix F
ol- The energy eigenfunctions of relative motion in the hydrogen atom are called
More states not shown ¥ " , < : . . . .
i *@- i T i orbitals. Each orbital is obtained by multiplying a radial factor R,, by a spherical
3s 3p  3d harmonic function Y,,,, which must have the same value of / as the radial factor. The 1),
2s 2p factor consists of a @,,(0) factor and a ®,,(¢) factor with the same value of
> 5
@ , §
O qj.'!/m = Rnf}/hn = Ru!(r)eﬂmu))q)m(qb)
To each one of these eigenfunctions there corresponds a stationary state of the electron.
=101 . " 5 x
with predictable values of the energy and the square of the angular momentum. If the
complex @ functions are used, there is also a predictable value of the = component of
vEL the angular momentum. The energy, the square of the angular momentum. and the -
-154 component of the angular momentum are a complete set of commuting observables for
Figete 16.5. Engrgy Levsts of 4 the electronic motion of the hydrogen atom. That is, if each of these variables is
gure 2.0 e / evels e 7 ¥ .
Hydrogen Atom. The bound-state measured, the system will afterwards be in a state corresponding to a known wave

energy levels are quantized, function.
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Table 16.2. Radial Factors for Hydrogenlike Energy
Eigenfunctions

7\ 32
Ryg(r) = R\(r) = (_) 2e~rla

32
Raglr) = Ray(r) = _(5) ( ) S
a
g el —,:’r/’a
a

Rzl(’) = R7p(r

7 3 2
Ryg(r) = Rys(r) -]_J— (g) ’ [ o (%) :|L,—ZJ.'3u
=53 0] (-2}
Ris(r) = Rog(r) «F( )”' (2;;) 2%

Additional functions can be obtained from Appendix F.

The electronic energy levels of the hydrogen atom are called shells, because the
expectation value of the distance of the electron from the nucleus is approximately the
same for all states with the same value of 7 and is larger for larger values of n. The
shells are labeled with the value of n, the principal quantum number. There is also an
older notation in which the first shell is called the K shell, the second shell is called the
L shell, etc. Within a given shell, the states with a given value of / constitute a subshell.
The I = 0 state of a shell is called its s subshell. The three states in a shell with / = |
constitute a p subshell. A ¢ subshell consists of the five / = 2 states. An / subshell
consists of the seven / = 3 states. As further subshells appear, they are given the letters
& h, i, etc. (alphabetical after /). The letters s, p, d, and / came from the spectroscopic
terms “sharp”, “principal,” “diffuse”, and “fundamental,” but these names have no
connection with the present usage. There are n subshells in the nth shell. The first shell
has only the ls subshell, while the seventh shell has the 7s, 7p, 7d, 7/, 7g, 7h, and 7.
subshells.

*Exercise 16.12
Give the value of each of the three quantum numbers for each state of the fourth shell.

The Hydrogenlike Atom

A He" ion ora Li** ion has a single electron, and must be similar to a hydrogen atom.
We define a hydrogenlike atom to have one electron and a number Z of protons in its
nucleus. The only change that we need to make in our discussion of the hydrogen atom
is to replace the potential energy function in Eq. (16.1-1) by

(16.2-18)
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The energy eigenvalue of Eq. (16.2-12) is replaced by

f‘2 2 Z2 o2 Z.’.
Pl e or s wa e w1580 (16.2-19)
2u 2(4mey)an’ n°

and the variable p becomes

p=2ar= 2 (16.2-20)
na
Since p is proportional to Z, the effective radius of a shell is inversely proportional to Z
The first shell for a He™ ion is closer to the nucleus than the first shell of a hydrogen
atom, and so on. The orbital energy is directly proportional to Z* so that £ is larger in
magnitude (more negative) for a He™ ion than for a hydrogen atom, and so on.

Table 16.1 contains formulas for the first few spherical harmonic functions. and
Table 16.2 contains formulas for the first few radial factors of the hydrogenlike atoms.
Table 16.3 contains formulas for the real energy eigenfunctions for the first three shells
(using @, and @, instead of ®,, and ®_,,). The real ® functions will often be more
useful in describing chemical bonding, and the complex @ functions will be more
useful in discussing angular momentum values.

Instead of giving the value of the subscript /, we can give the letter of the subshell.
The 210 function can be called the 2p0 function and the 211 function can be called the
2p1 function, etc. The 2p0 function is also called the 2p. function. The 2p function with
®,,, is called the 2p, function, and the 2p function with @, is called the 2p, function.
The labels on the real 3d functions can be seen in Table 16.3. The formulas in these
tables can be applied to the hydrogen atom by letting Z = 1, to the He™ ion by letting
Z =2, etc. Other wave functions can be constructed from formulas in Appendix F,

EXAMPLE 16.2

Write the formula for 5.

Solution
From Eq. (16.1-32),

From Table 16.1,

From Table 16.2,

N
Ry (p) = (‘5) —=pe P/}

The energy eigenfunction is

va'C ol NSRRI .t Ll (- S
Yo = (E) mPe 212 sin(f) ¢ = (5) T—ﬁ;e 2126 5in(0) ¢

It is important to have a grasp of the qualitative properties of the hydrogenlike
orbitals. Figure 16.6 shows graphs of the R functions for the first three shells. The
number of nodes in the R function increases by unity if n is increased by unity for fixed
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Table 16.3. Real Hydrogenlike Energy Eigenfunctions

1 Z ih —Zrja
Ulflu:'/'/u:_(_) e %/

NZAV

'1"/2() = I,;'lz_‘ = : (g) (2 = *) —/;,'1(4

Yo, =¢zpr= (5) ( ) o= %120 gin(6) cos(p)

oy, =, = (93/2 (%) #7124 sin(6) sin(¢)

bsoo =3 =7 3\1/35 @m {s A 2_21) } | e
Vi = Wy, = 81/; (g)w (6a )e 2134 in(6) cos(9)
Uiy = U, 8?/35 @m (% -t ) ~2r/34 §in(6) sin( )
V320 = Va4, 81\1/-6? g)m @) e 4%(3 cos? () ~ 1]
¥3a, = g{% (5)3/2 (%)ze"z” % sin(6) cos(6) sin(¢))

a
32 ;N2
Yag = A (g) (é) e~ 43 5in(6) sin(2¢)

[, and decreases by unity if / is increased by unity for fixed n. The ®, function and the
®, function for the s subshells are equal to constants. The orbitals in the s subshells
depend only on r and are called spherically symmetric functions. The other @ and @
functions are more complicated, especially in the case of the complex @ functions,
which have a real and an imaginary part. Figure 16.7 shows graphs of several of these
functions. The three spherical harmonic functions that occur in the 2p subshell are
exactly the same as the three spherical harmonic functions that occur in the 3p subshell
or any other p subshell, and those of the 3 subshell are the same as those of any other ¢
subshell, and so on.

It is not possible to draw a graph representing a function of three independent
variables, and it is also difficult to visualize the qualitative properties of the orbital by
looking at three separate graphs for the R, ®, and ® functions. Therefore, we introduce
the orbital region, which is the region in space where the magnitude of the orbal
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Figure 16.6. Radial Factors for Hydrogenlike Energy Eigenfunctions. (a) n=1. (b} n = 2. (c)
n = 3. The pattern of numbers of nodal surfaces is important. As n is increased with / fixed, the
number of spherical nodal surfaces increases. As ! is increased with n fixed, the number of sperhical
nodal surfaces decreases.

function is larger than some specified small value. Since the square of the orbil
function is the probability density, the orbital region is the region inside which the
electron is likely to be found. A common policy chooses a constant magnitude of the
orbital at the boundary of the orbital regions such that 90% of the total probability of
finding the electron is inside the orbital region. Pictures of orbital regions are seen in
almost all elementary chemistry and organic chemistry textbooks, but sometimes the
distinction between the orbital and the orbital region is not made clear. The orbital is a
one-electron wave function, while the orbital region is a three-dimensional region in
space inside of which the orbital is larger in magnitude than some small value. Figure
16.8 shows several orbital regions. The sign of the orbital function is indicated for the
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Figure 16.7. Some Factors of Spherical Harmonic Functions. These are the factors by which
the radial functions must be multiplied to give the energy eigenfunctions.

real orbitals. Notice the differences between the orbital regions for the complex 2p and
the real 2p orbitals. For the complex orbitals, we take the magnitude of the complex
exponential e™? or e~ which is a constant, while for the real orbitals we have either
sin(mg) or cos(me). The compactness of the orbital regions of the real p functions often
makes them more useful than the complex p orbitals in discussing chemical bonding.

|‘~U2pw] =f‘lf2mi =l vyl =gyl

0| B
\J‘U

Wap, = Vary

Wag2 = Wazo

Flgure 16.8. Some Orbital Regions for Hydrogenlike Orbitals. The orbital region is the region in
space inside which the orbital function ditfers significantly from zero.
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(b)

(d)

Figure 16.8. The Nodal Planes of the
Real Energy Eigenfunctions of the
Second Shell. (a) The nodal sphere
of the 2s wave function. (b) The nodal
plane of the 2p, wave function. (c) The
nodal plane of the 2p, wave function.
(d) The nodal plane of the 2p, wave
function. Each of these surfaces repre-
sents the points in space where the wave
function vanishes

The orbital regions can be approximately constructed from the pattern of the nodal
surfaces in the R, ©, and @ functions. The orbital region cannot include any nodal
surface, so any nodal surface divides the orbital region into two separate subregions,
which are sometimes called “lobes”. If there is a node in the R factor, the nodal surtace
is a sphere. If there is a node in the @ factor the nodal surface is a cone, or a plane it the
node occurs at (0 = /2 (90°). If there is a node in a real & factor the nodal surface is a
half-plane with edge at the z axis, which is always paired with another half-plane 1o
make a nodal plane containing the z axis. The nodes in the real part of a complex ®
function are just like those of a real @ function, and the nodes in the imaginary part of a
complex @ function are just like those of a different real ® function. The number of
nodal surfaces is always equal to » — 1 if the spherical nodal surface at r — = is
excluded (and we will consistently exclude it). The 1s orbital has no nodal surfaces.
Each of the orbitals in the second shell has one nodal surface, and each of the orbitals in
the third shell has two nodal surfaces, and so on.

EXAMPLE 16.3
Describe the nodal surfaces for the real orbitals of the second shell.

Solution

We disregard the spherical nodal surface at » — co that occurs with each orbital. In each of
the orbitals of the second shell there is one node. For the 2s function there is one node in
the R function, producing a single spherical nodal surface. The 2p. function has a node in
the @ function at § = 7/2, producing a nodal plane in the x—y plane. The 2p, function has
nodes in the @ function at ¢ = /2 and at 37n/2, producing a nodal plane in the y-z plane.
The 2p, orbital has a nodal plane in the x-z plane. Figure 16.9 depicts the nodal surfaces
in the real orbitals of the second shell.

Exercise 16.13
Describe the nodal surfaces for the real orbitals of the 34 subshell.

In general, a wave function with more nodes corresponds to a higher energy. This fact
correlates with the fact that the de Broglie wavelength has a smaller value if there are
more nodes. By Eq. (14.4-3), the de Broglie wavelength is inversely proportional to the
speed, and thus has a smaller value when the kinetic energy is larger. With a particle in a
one-dimensional box, the number of nodes was (in addition to the nodes at the ends of
the box) equal to n — 1, where n was the quantum number. The energy was proportional
to the square of n. With the harmonic oscillator, the number of nodes was equal 1o ¢, the
quantum number, and the energy was proportional to v+ 4. In the real hydrogenlike
orbitals, the number of nodal surfaces is equal to n — |, where n is the principal
quantum number, and the energy is also higher for larger values of n.

Normalization of the Hydrogenlike Orbitals

For motion of one particle in three dimensions, normalization in cartesian coordinates
means

Jh J J W(:{.J’.Z)W(A‘,_V,:)dxc[rd::JI [ J Wy I =
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In spherical polar coordinates,

21

B0 Pt 0 P p2W
J J J l(r, 0, )11 sin(0) dep dO dr = J ‘ J W(r, 8, @) d’r =1 (16.2-22
0 0 J0 0 JO JO
We abbreviate the volume element in any coordinate system by ¢°r or by dg. The factor
#? sin(0), which is called a Jacobian, is required to complete the element of volume in
spherical polar coordinates.

d*r = »* sin(0) d¢p dO dr (spherical polar coordinates) (16.2-23)

The form of this Jacobian can be deduced from the fact that an infinitesimal length in
the r direction is dr, an infinitesimal arc length in the € direction 1s rd0, and an
infinitesimal arc length in the ¢ direction is » sin(f)d¢. Since the lengths are
infinitesimal, there is no distinction between arc lengths and linear lengths. The element
of volume is the product of these mutually perpendicular infinitesimal lengths, giving
Eq. (16.2-23).

The normalization integral for the hydrogen orbitals can be factored in spherical
polar coordinates:

5

roC m &
R*Rr* a’rJ O*O sin(0) cJ'UJ P*Ddep = | (16.2-24)
Jo 0 0

We make the additional normalization requirement that each of the three integrals n
this equation equals unity. The constants in the formulas for the R, ®, and @ factors that
we have introduced correspond to this requirement. These separate normalizations in
Eq. (16.2-24) simplify the calculation of many expectation values,

EXAMPLE 16.4
Calculate the expectation values (1/r) and (¥7), where ¥~ is the potential energy, for a

hydrogenlike atom in the ls state.

Solution

Since the wave function is normalized, we can omit the denominator in the formula for the
expectation value shown in Eq. (15.4-1). We can factor the integral:

1 ] T 2n
<->=J R’,*OiRmrzer ®30®Uosin(6)d6J DFD, dop (16.2-25)
0

r 0 2 0

By our separate normalizations, the second and third integrals both equal unity, so that

1 e A A
(—) = J Rlo*—Rmr?' dr = 4(4) J e~ 2rfay gy
r 0 r a/ Jo

Z\'ray2 7
:4(;) (ﬁ) == (16.2-26)

where we looked up the integral in Appendix C.
Zet (1 B 722
- 4‘."{80(1

{v") = (16.2-27)

4mey \r

Since the ¢ and the ¢ integrals in Eq. (16.2-25) both equal unity, we can omit them and use
only the function R in calculating the expectation value of any function of r. The
expectation value (1/r) is proportional to Z, in agreement with the statement that the
effective radius of a shell is inversely proportional to Z.
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*Exercise 16.14

Substitute the values of the constants into Egs. (16.2-26) and (16.2-27) to obtain numerical values
for (1/r) and (¥7) for a hydrogen atom,

As shown in Eq. (16.2-27) the expectation value of the potential energy of a
hydrogenlike atom equals twice the total energy of Eq. (16.2-12). Therefore, the
expectation value of the kinetic energy is half as large as the magnitude of the potential
energy, and is equal in magnitude to the total energy (the kinetic energy must be
positive while the total energy and the potential energy are negative). This behavior
oceurs in all systems of particles interacting only with the Coulomb potential energy.
and is a consequence of the virial theorem of mechanics.’®

The Radial Distribution Function

The radial distribution function, £, is defined as the probability per unit value of r for
finding the electron at a distance » from the nucleus. That is,

Probability that the particle
Jidr = | lies at a distance from the (16.2-28)
nucleus between r and r + dr

The locations that lie at distances from the nucleus between » and r + di consutute o
spherical shell of radius r and thickness dr, as shown in Figure 16.10a. The toul
probability of finding the electron in this shell is obtained by integrating over ¢/ and ¢

o P21
frdr = (J J W(r, 0, ¢))*r* sin(0)¢ a’()) dr (16.2-29)
0Jo

where r is not integrated. The integral can be factored, and the ¢ and ¢ integrals give
factors of unity:

2n

fodr =R*R (J 1®|? sin(0) d6 J
0

|®|2d¢)r2 dr = R*Ri* dr (16.2-30)
0

The expectation value of a quantity depending only on r can be computed using the
radial distribution function. For example,

| <1 5 =
<> = J —R*Rr*dr = J - f.ar (16.2-31)

r o r o I

Figure 16.10b shows graphs of the radial distribution function for several energy
eigenfunctions. All of the states of a given subshell have the same radial distribution
function because they have the same radial factor in their wave functions. Since the
radial distribution function is proportional to /%, each one vanishes at the nucleus, and
since it is proportional to an exponential function, each one approaches zero for large
values of r. Therefore, each radial distribution function goes through one or more
relative maxima. The s orbitals are nonzero at the nucleus (the origin) but even their
radial distribution functions vanish at the nucleus.

Ylra N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall Englewood Cliffs, N.J., 1991, pp. 434ff
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Figure 16.10. The Probability Distribution for Electron—Nucleus Distances. (a) A spherical
shell of radius r, and thickness dr. This shell is centered on the origin, and contains the points
that are at distances from the origin between r and r + dr. (b) Radial distribution functions for
hydrogenlike orbitals. The radial distribution function is the probability density for finding the
particle at a certain distance from the origin, irrespective of direction. It is somewhat analogous to
the probability density for molecular speeds, although that probability density is a density in velocity
space instead of coordinate space.

*Exercise 16.15

a. Calculate the expectation value (r) for a hydrogenlike atom in the 1s state. Why is this not
equal to {1/ 7'

b. Calculate () for a hydrogenlike atom in the ls state. Why is this not equal 1o (r)*?

¢. Find the most probable value of r for a hydrogenlike atom in the 1s state. Why is this not equal
to (r)?

The Time-Dependent Wave Function of the Hydrogen Atom

We can now write the time-dependent wave function, using the three-dimensional
analogue of Eq. (14.4-22):

2)

(V)

Foim(r, 0,9, 8) = Y, 0, p)e™ 1% (16.2-

This represents a stationary state. The probability density for finding the electron is
time-independent. The expectation value of any time-independent variable is time-
independent, and can be calculated with the coordinate wave function.

Exercise 16.16
Show that the expectation value (1/r) is exactly the same as in Example 16.4 when the time-
dependent wave function ‘¥4, is used instead of the coordinate wave function i/, .
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The Intrinsic Angular Momentum of the Electron. “Spin”

It is found experimentally that in addition to the angular momentum included in the
solution to the Schridinger equation, electrons have an additional angular momentum.
To obtain adequate agreement with experiment, this feature must be added 1o the
Schridinger theory. The angular momentum included in the Schrodinger theory s now
called the orbital angular momentum and the additional angular momentum is called
the intrinsic angular momentum or the spin angular momentum. The Schridinge:
theory is nonrelativistic and cannot be correct when particles have speeds near the
speed of light. There is a version of quantum mechanics that is compatible with special
relativity, based on the Dirac equation rather than the Schrédinger equaton. The
intrinsic angular momentum occurs naturally in this theory.

EXAMPLE 16.5

Calculate the expectation value of the square of the speed of the electron in a hydrogen
atom in the 1s state, and from this calculate the root-mean-square speed. Compare this
speed with the speed of light.

Solution
We can obtain this quantity from the expectation value of the kinetic energy:
et 1
(HYy=E —(¥)==218x 107"+ —H
dmeg \r
=218 x 1071 42218 x 107 ) =2.18 x 107"*J
27 2218 x 107 ¥ kgm?s7?)
m 9.11 x 1073 kg
=" =216 x 10°ms™'

() = =469 x 107 m?s™?

Urms

which is smaller than the speed of light by a factor of roughly 100. Although relativistic
corrections are not important for the hydrogen atom, they are important for atoms beyond
the middle of the periodic table.

The z component of the intrinsic angular momentum takes on one of only ™o
possible values, fi/2 and —# /2. We denote the intrinsic angular momentum by S and
write

(16.2-33)

o] v

S, ==

We assign a new quantum number, ni, for the z component of the ntrinsic angular
momentum, with the values

1
mx:ié' (16.2-34)

The total angular momentum of an electron is the vector sum of the orbital and mtrnsic
angular momenta. The total angular momentum is denoted by J and its = component is
denoted by J.. It has values

J. = mh +mh (16.2-35)

where m is the same quantum number as before.
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Figure 16.11. Cones of Spin Angular
Mementum Directions for One Elec-
tron. Compare this diagram with that of
Figure 16.5. The z component of an
orbital angular momentum can take on
various values, depending on the value
of /. The z component of the spin angular
momentum can take on only one of two
possible values.

The pattern of values of m; is analogous to that of Eq. (16.1-43) for the orbital
angular momentum if we assign a quantum number s for the square of the intrinsic
angular momentum with a fixed value of L. If we allow half-integral values for quantum
numbers, all angular momentum quantuﬁl numbers follow this pattern. The square of
the intrinsic angular momentum has the fixed value

1 /1
§t = ﬁ2§(§+ 1) (16.2-36)

following the same pattern as Eq. (16.1-40).

There are three principal differences between the orbital angular momentum and the
intrinsic angular momentum. First, the orbital angular momentum occurred naturally in
the nonrelativistic Schrodinger theory, while the intrinsic angular momentum is
arbitrarily added to the theory in order to make it agree with experiment and with
this aspect of relativistic quantum mechanics. Second, the intrinsic angular momentum
has only one possible magnitude while the orbital angular momentum has variable (but
quantized) magnitude. Third, this single magnitude corresponds to a quantum number
that is a half-integer instead of an integer. Figure 16.11 shows the two cones of possible
directions of the intrinsic angular momentum.

EXAMPLE 16.6

Find the angle between the z axis and the intrinsic angular momentum for m, = + 4.

Solution

) = arccos L = arccos (J_/i)
1/(1/2)3/2) V374

= arccos (0.57735) = 54.7356. .. degrees = 0.9553166.. . radians

It is natural to seek a classical interpretation for the intrinsic angular momentum
Although we have previously treated the electron as a mass point, and although it 1s not
known what its internal structure is (if any), it is customary to ascribe the intrinsic
angular momentum to rotation of the electron about its own axis, calling it spin
angular momentum. The assumed motion is analogous to the rotation of the earth on
its axis as it revolves about the sun. We will use this spin interpretation, although we
could proceed if we wished without any mental picture of spinning motion, and there 15
no guarantee that it is physically accurate. We now have twice as many possible states
of electronic motion in a hydrogenlike atom as we did before, since for every set of
values of the quantum numbers n, /, and m, there are two possible values of . We will
call the state for m, = -+ the “spin up” state and the state for m, = — 1 “spin down”™
state, corresponding to the direction of the intrinsic angular momentum vector.

There are two different ways to include spin in our notation. The first is to attach
another subscript to the orbital symbol, replacing nlm by nlmm, . There is no need o0
include the value of s since it is fixed. The orbital is now called a spin orbital. The
second way is to multiply the original orbital by a spin function that is called = for
m, = +% and f§ form = — % The original orbital is now called a space orbital and the
product is called a spin orbital. The spin function is thought of as being a function of
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Figure 16.12. The Helium Atom Sys-
tem. The occurrence of two electrons
makes it impossible to obtain an exact
solution to the Schrédinger equation for
this system.

some spin coordinates that are not explicitly represented. The two ways of wnting a
spin orbital are equivalent:

tn&n.‘m.l/l = Wn.’m“« wn.{'m.fl,/"l = l//m'mﬁ (16.2-37)

We define operators for the spin angular momentum that are analogous to the orbital
angular momentum operators. We do not write any explicit mathematical forms for
them, but assign their properties by definition. The spin functions o and f§ are defined 1o
be eigenfunctions of %, the operator for the square of the spin angular momentum:

2 = #2(1/2)(3/2)a (16.2-38)
S8 = H2(1/2)(3/2)8 (16.2-39)

They are also defined to be eigenfunctions of S., the operator for the = component of the
spin angular momentum:

2 fi
S, = +5a (16.2-40)

B=—==f (16.2-41)

The spin functions are defined to be normalized and to be orthogonal to cach other

Addition of the intrinsic angular momentum modifies the Schrodinger theory of the
electron so that it agrees adequately with experiment for many purposes. Further
modifications can be made to include additional aspects of relativistic quantum
mechanics such as small differences between the energies of “spin up™ and “spmn
down” states for states of nonzero orbital angular momentum. We will not discuss the
spin—orbit coupling that produces this effect, although it is numerically important in
heavy atoms.”

The Helium Atom in the “Zero-Order’” Orbital
Approximation

The hydrogenlike atom is the only atom for which the Schrodinger equation can be
solved without approximation. This does not invalidate the Schrodinger quantum theory
for other atoms, since approximate treatments of other atoms have been carried out that
give accurate agreement with experimental energy values. It does mean that the only
way to proceed with other atoms is with approximations.

The Hamiltonian of a Heliumlike Atom

The helium atom contains two electrons and a nucleus containing two protons, \We
define a “heliumlike” atom with Z protons in the nucleus, so that Z = 2 represents
the He atom, Z = 3 represents the Li* ion, etc. The system is shown in Figure 16.12.

The three-body problem cannot be solved exactly, either in classical or in quantum

Pilar, op. cir., pp. 301 (Note 1); K. Balasubramanian, J. Phys. Chem., 93, 6585 (1989)



598 16 The Electronic States of Atoms. |. The Hydrogen Atom and the Simple Orbital Approximation for Multielectron Atoms

mechanics, so we assume that the helium nucleus is stationary. This is a good
approximation, as with the hydrogenlike atom. With a stationary nucleus, the classical
Hamiltonian function is

1 1 | Za® Zo* v
Hi = pt dooopl ol " T (16.3-1
d P+ P2 +4ﬂﬁu ( i = ) 2.0-1)

) T Fiz

where p, is the vector momentum of electron 1, p, is the vector momentum of electron
2, m 1s the electron mass, and the distances are as labeled in Figure 16.12. The
Hamiltonian operator is

N h? 1 7l Z_B 2
He (B4 — 22 22 4 2 (16.3-2)
2m dme, ry P

2 bl . ~
where Vi and V3 are the Laplacian operators for electrons 1 and 2

The “Zero-Order”’ Orbital Approximation

The Hamiltonian operator of Eq. (16.3-2) gives a time-independent Schrodinger
equation that has not been solved exactly. We begin with the zero-order approxima-
tion, which is obtained by neglecting the repulsion of the electrons for each other. It 15
not a good approximation, but it is a starting point for better approximations. The
approximate Hamiltonian operator is now

#? V2 Ze? #? V2 Ze?

O — ] = IE
2m dmegr, 2m T 4dmegn

(16.3-3)

where we add a superscript (0) to distinguish the approximate “zero-order™ Hamilto-
nian from the correct Hamiltonian. It is a sum of hydrogenlike Hamiltonian operators:

HO = fy (1) + Hy (2) (16.3-4)

where the subscript HL stands for “hydrogenlike,” and where we abbreviate the
coordinates of a particle by writing only the particle index. The approximate time-
independent Schrodinger equation is

HOPO( 2) = [f”{m(l) + HHL(z)]W“”( 1,2) = EOpO 2 (16.3-3)

where we attach a superscript (0) to the zero-order wave function and eigenvalue
Equation (16.3-5) can be solved by separation of variables, using the trial solution:

YO, 2) =y (r), 01, d) (2, 03, $2) = ¥ (1DY(2) (16.3-6)

where i/, and |, are two orbitals (functions of the coordinates of one electron). In the
second version of the orbitals, each particle’s coordinates are represented only by their
subscript. A multielectran wave function that is a product of orbitals is called an orbital
wave function.

We substitute the tzldl solution into Eq. (16.3-5) and use the fact that ¢, (1) is treated
as a constant when HHL(2) operates and /,(2) is treated as a constant when Hm (1)
operates. The result is

V@ (1) + ¥ 1)1E1HL(2)¢/3(2):E‘O)u’;i(l}%(z) (16.3-7)
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Division of this equation by y, (1){5(2) completes the separation of variables:

| B [
——— Hy (W (1) + —— Hy (2),(2) = E© (16.3-8)
(1) W5(2) .
Each of the terms on the left-hand-side of the equation contains only a set of variables
not occurring in the other term, and the right-hand side is a constant. The first term must
be equal to a constant, which we call £, and the second term must be equal to o
constant, £, such that

E[ +E2 :E(U) (161-{))

We now have two differential equations:
Hy (W, (1) = Epg, (1) (16.3-10)
‘I:!HL(z)!f/z(z) = Ezl.f’!z(z) (16.3-11)

Equations (16.3-10) and (16.3-11) are two hydrogenlike Schradinger equations. There-
fore, £, and £, are hydrogenlike energies (orbital energies). The total electronic energy
in the zero-order approximation is

1 1
EY) =E, (HL)+E, (HL) = —(13.60 evuz-)[ﬁ + —} (16.3-12)
2 ° n

E
L

where n) and n, are two values of the principal quantum number for a hydrogenlike
atom. The orbitals (1) and ,(2) are hydrogenlike orbitals:

\F(U){l‘ 2) = WI(I)WZ(Z) = ijjn,l,m,m”(l)wnzfzmzm,:(z) (16.3-13)

The values of a given quantum number for the two orbitals are not necessarily equal. so
we add a subscript on each subscript to distinguish them from each other. The notation
with separate spin functions can also be used.

Probability Densities for Two Particles

For a system of two particles whose wave function is (1, 2), the probability of finding
particle | in the volume element ¢*r, and finding particle 2 in the volume element "r-
is given by

(Probability) = W*(1, 2)¥(1, 2)d*r, d’r, = |¥(1,2)) d’r, d*r, (16.3-14)

The square of the magnitude of the wave function is a probability density in a six-
dimensional space. For the orbital wave function of Eq. (16.3-13), the probabiliny
density for two particles is the product of two one-particle probability densities:

(1, 2)17 = [, (NP ,2) (16.3-13)

Since we have neglected the interaction between the electrons, it is reasonable that the
probability densities of the two particles are independent of each other. If this
probability density is normalized,

J|‘P{l, NP dr d’ry =1 (16.3-16)

We consider the inclusion of spin functions later.
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Figure 16.13. Two Encounters of
Classical  Particles. Since classical
mechanics includes exact trajectories,
we can “track” each particle exactly.

The Indistinguishability of Identical Particles

Although we have obtained a function that satisfies our approximate Schrodinger
equation and the appropriate boundary conditions, it must be further modified to obtain
agreement with experiment. It must conform to the condition: /dentical particles are
inherenily indistinguishable from each other. This condition does not occur in classical
mechanics and is an additional hypothesis that must be tested by comparing is
consequences with experimental fact. It is plausible because of the uncertainty
principle, which makes exact trajectories impossible to specify, so that if two identical
particles approach each other closely it might not be possible to tell which is which afier
the encounter. Figure 16.13 shows two encounters that could be distinguished from
cach other if classical mechanics were valid, but which might not be distinguished
according to quantum mechanics.

We must not build anything into our theory that would allow us to distinguish one
particle from another of the same kind. In a helium atom, the probability of finding
electron | at location | and finding electron 2 at location 2 must equal the probability of
finding electron 1 at location 2 and finding electron 2 at location 1. Any difference n
these two probabilities would give an illusory means of distinguishing the particles. The
probability density in Eq. (16.3-14) must remain unchanged if the locations of the two
electrons are interchanged:

(I, 232901, 2) = W2, 1)*¥(2, 1) (16.3-17)

That is, the probability density ¥*¥ must be symmetric with respect to interchange ot
the two particles’ locations. The probability density of two particles does not have 1o be
symmetric if the particles are not identical. For example, the probability density for a
hydrogen atom does not have to be symmetry with respect to interchange of the proton
and the electron.

With real functions there are only two ways to satisfy Eq. (16.3-17). Either the wave
function must be symmetric with respect to interchange of the particles:

W(l,2) =W (2,1) (symmetric wave function) (16.3-18)

or the wave function must be antisymmetric with respect to interchange of the particles
(change sign if the locations of the particles are switched):

W(l,2) = -¥(2, 1) (antisymmetric wave function) (16.3-19)

Although our wave functions are not required 1o be real, they are also not required to be
complex. We consider only these two possibilities.

Particles that obey Eq. (16.3-18) are called bosons, and particles that obev Eq. (16.3-
19) are called fermions. Electrons are found experimentally to be fermions. so that our
approximate two-clectron wave function must be modified to obey Eq. (16.3-19)
Protons and neutrons are also fermions. Photons are bosons. Atoms or molecules
containing an even number of fermions are bosons, and molecules containing an odd
number of fermions are fermions. The requirement that a two-electron wave function be
antisymmetric is a requirement of the same sort as the requirement that a wave function
be continuous, single-valued, and finite. These conditions, in addition to solution of the
Schridinger equation, must be applied to find an acceptable wave function,

The simplest way to obtain an antisymmetric two-electron orbital wave function is 1o
add a second term that is the negative of the first term with the orbitl labels
interchanged, giving

W(1,2) = Cl, (s(2) = ¥y (1)y,(2)] (16.3-20)



The Pauli exclusion principle is named
for Walfgang Pauli, 1900—1958, who
received the 1945 Nobel Prize in
physics for his contributions to
quantum mechanics.
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We say that we have antisymmetrized the wave function. With this wave function it is
not possible to say which electron occupies which orbital, because the labels are i one
order in the first term of the antisymmetric wave function and in the other order in the
second term.

Exercise 16.17
By explicit manipulation, show that the function of Eq. (16.3-20) obeys Eq. (16.3-19)

The Pauli Exclusion Principle

There is an important fact about fermions that we can see in Eq. (16.3-20). If the
orbitals , and i, are the same function, the two-particle wave function is the
difference of two identical terms and vanishes. A vanishing wave function cannot
represent any state of the system. Therefore, a given spin orbital cannot occur more than
once in any term of a two-electron wave function. We will later construct orbial wave
functions for more than two electrons. When antisymmetrized, these will consist of
sum of terms with different signs. Each term will be a product of spin orbitals, one for
each electron. The Pauli exclusion principle is a generalization of our observations for
two electrons: In an orbital wave function, the same spin orbital cannot occur mor
than once in each term. A spin orbital that occurs in an orbital wave function is smd o
be “occupied” by an electron. Another statement of the Pauli exclusion principle is: /n
an orbital wave function, no two electrons can occupy the same spin orbital.
The probability density for the antisymmetrized wave function of Eq. (16.3-20) is

WL 2)*P(1.2) = [CP[ (P @1 + WP, )F
= (¥ (D5 (2)% g (2) = (1) ¥y (DY (2)*§5(2)] (16.3-21)

where C is a normalizing constant. Each term in Eq. (16.3-21) gives an mtegral that
factors into a product of two one-particle integrals. Each of the first two terms gives
unity if the orbitals are normalized. Each of the last two terms gives zero if the orbitals
are orthogonal to each other. To normalize the wave function,

c

I =

14 1]=2|C)

or if C is taken to be real and positive,

=
! -
= (16.3-22)

The probability of finding particle 1 in the volume element °r, irrespective of the
location of particle 2 is given by integrating the probability density in Eq. (16.3-14)
over all positions of particle 2:

(Probability of i"mding)

— j Y% 5] 3 5 3o 323
a— Y U (1, 2)*'¥(1,2)d r_]{." r (16.3-23)

If the two-electron wave function is a one-term orbital wave function such as that ot Eg
(16.3-6), the orbital function for electron 1 factors out of the integral:

(Probability of finding Ua(2)M0n(2) dr
PACA 2le )t 2

particle | in d’r,

)an*w]mff-“’r,
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If 1), is normalized, the integral in this equation equals unity and

(Probability of finding

particle 1 in d’r, ) =y, (D%, () d’ry = [, (D dr, (16.3-24)

The probability density for electron | is just that of its own orbital, independent of
electron 2. An analogous equation can be written for electron 2.

If the antisymmetrized wave function of Eq. (16.3-21) is used, the expression must be
integrated in the same way as Eq. (16.3-23) to obtain the probability density for particle
I. Only the first two terms in Eq. (16.3-21) survive, due to the orthogonality ot the
orbitals, and the result is

Probability of finding
particle 1 in d°r,

) = |CP{IW (DF + [y, ()P ] dr,

l 2 b ] 4 -
=3[y (P + WP ] &r,y (16.3-25)

This probability is the average of what would occur if electron | occupied orbital 1 and
what would occur if it occupied orbital 2. Since we cannot specify which orbital 15
occupied by the electron, this is a plausible result. An exactly analogous expression can
be written for electron 2. The total probability of finding some electron in a volume 'r
is the sum of the probabilities for the two electrons:
Probability of finding
( an electron in d°r,

) = 2{CP [y + W ()] &

= [ (0F + (0] d’r (16.3-26)

When this probability density is multiplied by —¢, the electron charge, it is the charge
density (charge per unit volume) due to the electrons.

The Ground State of the Helium Atom

The lowest-energy state of a system is called its ground state. Since the subshell of
lowest orbital energy, the s subshell, contains two spin orbitals (one space orbital).
both electrons can be in the Ls subshell. Our approximate ground-state wave function is

(LD = Yoo os-12(1,2)
= ClW100.12(0¥ 100,-1/2(2) = W00, 120D 1001 12(2)] (16.3-27)

where two sets of orbital subscripts are used because the orbital wave function contains
two spin orbitals. This wave function is antisymmetric, and satisfies the Pauli exclusion
principle. If the spin orbitals are written as products of space orbitals and spin functions.
the spin part can be factored out:
W0(1.2) = Cl 100D 100(2)B2) = Y100 DB 10 2)(2)]
= Cr1oo( D 10o(2)[2(1)A(2) = B(1)2(2)) (16.3-28)

To normalize the wave function, the constant C must be such that
1 =C*C | WO, 2)*¢ (1, 2) dg\dg (16.3-29)

where the coordinates of both particles are integrated. Since we have introduced spin
functions, an integration over the independent variables of the spin functions as well as
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over the space coordinates is indicated. We regard dg| and dg) as representing both
space and spin coordinates:

dgy = d’r, d*(1) (16.3-30)

where d°r, is the volume element in ordinary space, and @*(1) is the “volume element”
of the unspecified spin coordinates. We do not explicitly integrate over the unspecified
spin coordinates, but define the spin functions z and ff to be normalized and orthogonal
to each other:

Ja(l)*x(l)d"(l) = Jlﬁ(l)*ﬁ(l)dj(l) =1 (by definition) (16.3-31)
and
J[i(l)*x(l)ds(l):Jﬁ(l)*ﬁ(l)d’(l)zo (by definition) (16.3-32)

We use these definitions when an integration over spin coordinates is indicated instead
of explicitly carrying out an integration.

The two-electron wave function in Eq. (16.3-28) is substituted into the normalization
integral of Eq. (16.3-29). The integral can be factored, since the space and spin
coordinates of each particle occur in separate factors:

I = C*CJ V1oo(1D*W100(1) &r Jl,f/]gu(2)*!!f|(m(2)ff3r3

x J[a(l)/ﬁ(Z) — B2 1AQ) — Ba2)]) d*(1) d(2) (16.3-33)

Since the hydrogenlike orbitals are normalized, the integrals over the space coordinates
equal unity, and we have, after multiplying out the terms and factoring the spin
integrals:

| = C*Cl U a(1)*a(1)d*(1) J B(2)*B(2)d(2)
+ [Bopnen |
- [arsnawm [peraee
- J B(1)*a(1)d*(1) J a(2)*B(2) 515(2)} } (16.3-34)
where we have factored the double integrals. Each of the first two terms in the final
equation above gives unity because of the defined normalization of the spin functions

The last two terms give zero because of the defined orthogonality of the spin functions.
so that if we choose C to be real and positive,

N
C:\/E (16.3-

oy
s
wh

The energy eigenvalue for our zero-order ground-state wave function is the sum of
two hydrogenlike orbital energies:
EVY) = E,(HL) + E,(HL) = 2(~13.60eV)Z? (16.3-36a)

For helium, Z = 2, so that
E{jly = —108:8eV (16.3-36b)



604 16 The Electronic States of Atoms. I. The Hydrogen Atom and the Simple Orbital Approximation for Multielectron Atoms

This approximate energy eigenvalue is seriously in error, since the experimental value is
=79.0¢V. Since 1eV is equivalent to 96.5kJmol™", an error of 30eV is a very large

error, larger than chemical bond energies. We obtain better approximations in the next
chapter.

Excited States of the Helium Atom

States of higher energy than the ground state are called excited states. For excited states
represented by orbital wave functions, there are two cases: (1) both electrons occupy the
same space orbital with different spin functions, and (2) the two electrons occupy
different space orbitals, either with the same or different spin functions. A statement of
which orbitals are occupied is called the electron configuration. The detailed
configuration is specified by writing the designation of each occupied space orbital
with a right superscript giving the number of electrons occupying that space orbital.
This superscript can equal either 1 or 2. The subshell configuration is specified by
writing the designation of each subshell with a right superscript giving the number of
electrons occupying orbitals of that subshell. The maximum value of this superscript is
2 for an s subshell, 6 for a p subshell, 10 for a ¢ subshell, and so on. The configuration
of the ground state of helium is (15)* (subshell and detailed configurations are the same
with s subshells). Two of the many possible excited configurations are (15)'(25)" and
(ls)'(2p0)' (detailed) or (ls)l('Zp)1 (subshell). A superscript equal to unity is often
omitted, so that (15)(2s) means the same as (15)'(25)'.

If both electrons occupy the same space orbital, a wave function for an excited state is

similar to that of the ground state, with the antisymmetric spin factor, For the
configuration (25)2:

1
Wy = 5V @DBR) - B1)a(2)] (16.3-37)

For the configuration {13)1(23)', there are four states, since each electron has two
choices, spin up and spin down. Four antisymmetric wave functions are:

1

¥ = V2 [¥1,(D¥,(2) - Vo (D1, (2)](1x(2) 6:3-288)
1

¥ = mﬁ[wu(wwhm = Yo (DY ()| B(1)B(2) (16.3-38b)

¥ = 5 @ ~ OB @D + B (163350

!
¥y =3 [V @) + ¥ (DY, )] DAR) — B(1)a(2)] (16.3-38d)

All of these functions are eigenfunctions of the £? and §? operators, although we do not
prove that fact.

Exercise 16.18

Show that '¥'; and ¥, satisfy the zero-order Schrédinger equation and find the energy eigenvalue.
Show that these functions are normalized if the orbitals are normalized.
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Angular Momentum in the Helium Atom. Russell-Saunders
Coupling

It is a theorem of both classical and quantum mechanics that the total anguiar
momentum of an isolated system is conserved. If no external forces act on the
system, its total angular momentum does not change in time. A conserved quantity
is called a constant of the motion. A quantum number determining the value of a
conserved quantity is called a good quantum number, and the quantity itself is
sometimes referred to by the same name. The total angular momentum is always a good
quantum number for an isolated atom or molecule, and for atoms in the first part of the
periodic table the orbital and spin angular momenta can be assumed to be good
quantum numbers. This assumption is called Russell-Saunders coupling.

The sum of two angular momenta is a vector sum. Consider an atom with two
electrons. Let 1, and s, be the orbital and spin angular momenta of electron 1, and
let 1, and s, be the orbital and spin angular momenta of electron 2. We will now
use lower-case letters for angular momenta of single electrons, and capital letters
for angular momenta of multielectron atoms. The total orbital and spin angular
momenta of the helium atom are vector sums of the contributions of the individual
electrons:

L=1+1] (16.3-39)

S=s+s, (16.3-40)
The total angular momentum of the atom is

J=L+8 (16.3-41)

The eigenvalues of the J2, JA'Z, 12, Ez, 32, and 3’1 operators follow the same pattern as
other angular momenta:

TV =2 + DY (16.3-42)
LY = hM,¥ (16.3-43)
W = #2L(L + )P (16.3-44)
LY =M ¥ (16.3-45)
S = #2S(S + DY (16.3-46)
S¥ = AMY (16.3-47)

Figure 16.14 illustrates how angular momentum vectors can add vectorially to produce
some particular values of the quantum numbers L, M, §, and My. In each diagram, the
tail of the second vector is placed at the head of the first vector, as is done in the
geometric representation of vector addition.

In Russell-Saunders coupling, the energy levels are characterized by the values of L
and S. The orbital angular momentum quantum number L is a nonnegative integer. The
spin angular momentum quantum number S is a nonnegative integer or half-integer.
Each set of states corresponding to a particular value of L and a particular value of S
is called a term. A Russell-Saunders term symbol is assigned to each term. The
principal part of the symbol is a letter giving the value of L, as follows:
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Figure 16.14. Examples of Vector Addition of Angular Momenta. These examples show how
angular momenta add vectorially to give sums that follow the standard pattern for an angular

momentum. (a) Two electron spins: mg; = 1/2, Mg = —1/2, Mg =0, S = 0. (b) Two electron spins:
Mg =1/2, My = —1/2, Mg =0, S=1. (c) Two electron spins: mg, = 1/2, My = 1/2, Mg = 1.
S =1. (d) Two p electrons' orbital angular momenta: /y =1, my =1, b=1, my = -1 M, =0
L =1.(e) Two p electrons’ orbital angular momenta: /y =1, m =0, b =1 m, =0, M, =0, L =2
(f) Two p electrons’ orbital angular momenta: my; = 0,4, =1, m, =0,k =1, M, =0, L = 0. (g) Tota
orbital and spin angular momenta: L=1, M, =1, S=1/2, Mg =1/2, M, =3/2, J = 3,2

Value of L Symbol

0 S

1 P

2 D

3 F

4 G
[={{e34

From this point on the symbols are in alphabetical order.
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A left superscript is attached that has the value 25 4 1. For our two sets of states we
will show that we have *S and 'S (pronounced “triplet S” and “singlet S.”) In addition
to the terms “singlet” for § = 0 and “triplet” for § = 1, we use “doublet” for § = 1/2
“quartet” for § = 3/2, etc. The value of the left superscript is called the multiplicity of
the term, and is equal to the number of values of M that occur since My ranges from §
to —S. A right subseript giving the value of J/ is also sometimes used.

We now investigate the values of the quantum numbers for particular configurations.
Since the angular momenta are vectors, their operators are expressed as vector sums.
For two electrons,

=0y + 120 + Gy + 1007 + Uy + 1) 6.3-48)
L=1,+1, (16.3-49)
§% = (B +50) + (5 +5,07 + By +3,)° (16.3-50)
S.=5,+5, . (16.3-31)

The ,'_, and 52 expressions are not easy to use because they contain terms that do not
commute with each other, and we will not obtain explicit expressions for them.” We can
find the values of M, and M, and from these infer the values of L and 5 using the fact
that M, ranges from +L to —L and that Mg ranges from +S to —S. For two electrons.
since the z components of two vectors add algebraically,

M, =m +m, (16.3-52)
and
MS = nl_ﬂ + m_s.z (1(3 §3

EXAMPLE 16.7

Find the values of the quantum numbers M, and M for each of the wave functions in Eq,.
(16.3-38a)-(16.3-38d).

Solution

g i N 1 ra
L= (o + o) ¥ = 5 (L0020 — a0, ) |x)2)
=0+0=0

so that M, = 0. All of the other wave functions also contain only s orbitals, so that M, = 0
for all of them.

S‘:'{‘(l = (gvl +3.2)¥,

(111’13(1 ¥5(2) — Wls(l)b‘f/;.!-{EJ)(:?;MU)C((Z) + o 1)5,2(2))

%I

= 2 ) — b, ) (30020 + 1) 520
( )tlf,_w,

S Levine, op. cit.,, pp. 292 (Note 3).
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so that V') corresponds to Mg = 1. We carried out the operations, but could have simply
identified the m, values and added them.,
Similarly,

so that My = —1 for \P,.

5.9 =5 [V, ~ Y (D0, @)
x [$a(DBR) + 52 f(1a2) + a(18.0B(2) + B(1)5,22(2)]
= 3 02, — b2 (0, )

x [(g)a(l)ﬁﬂ) +(3)ps@ + a(l)(if-)ﬁ(z) g ﬁm@z(zﬁ

=

so that Mg = 0 for W,. A similar calculation leads to the value Mg = 0 for \P,. We wrote
the operations and functions explicitly, but could simply have added the m values and the
m; values to obtain the same answers.

We have enough states that we can have a 3S term (L = 0. S = 1), with M¢=1.0.
and —1, plus a 'S term (L =0, S =0) with Mg = 0. The wave functions in Eq
(16.3-38) are eigenfunctions of the 5? operator. We state the eigenvalues without proof’

Sa(1)(2) = 24%4(1)(2) (16.3-54)

S2B(1)B(2) = 282B(1)B(2) (16.3-55)

S [a(1)B2) + B(1)x(2)] = 287[(1)F2) + F(1)x(2)] (16.3-56)
SHe(1)B2) = B(1)x(2)] = 0 (16.3-57)

The first three functions correspond to the triplet term and the fourth corresponds to the
singlet term. The symmetric spin factor in Eq. (16.3-56) belongs to the triplet, and the
antisymmetric spin factor in Eq. (16.3-57) is the singlet. This is the general pattern.

We can infer the values of L and S as follows: Since the only value of M, is zero.
there are only S states, with L = 0. We begin with the largest value of M, which is | in
this case. This means that the largest value of S is 1. A value of § equal to | requires
values of M equal to 1, 0, and — 1. We assign three states with these values 1 a 35
(triplet §) term. There is only one state remaining, with M = 0. We assign ittoa 'S
(singlet S) term. We always begin with the largest values of M, and M and assign the
states to the largest values of L and § first.

EXAMPLE 16.8
Enumerate the states in the (1s) (2p) configuration.

Solution

With the 1s orbital and one of the p orbitals, we can construct either a symmetric space
factor or an antisymmetric space factor, For example, using the 2p1 orbital we have

1
Yo = 5 [V (W @) + (1,2 (16.3-58)



16.3 The Helium Atom in the “Zero-Order" Orbital Approximation 609

and

¥, = %[wu(l)wzplm =~ Yo 2)] (163-59)
There is only one antisymmetric spin factor, and it must be combined with the symmetric
space factor, so the symmetric space factor leads to only one state, with § = 0. The three
triplet spin factors are all symmetric, so the antisymmetric space factor can combine with
any of these, leading to three states, with Mg equal to 1, 0 and — 1, but with § = 1 for each
one. The 2p0 and the 2p, —1 orbitals each combine with the 1s orbital in exactly the same
way as the 2pl orbital, to make one symmetric space factor and one antisymmetric space
factor. Each corresponds to four states for a total of 12 states.

The space factors of Eqs. (16.3-58) and (16.3-59) both correspond to M; = 1. The
analogous factors containing the 2p0 orbital correspond to M; = 0, and those containing
the 2p, —1 orbital correspond to M; = —1. These three values of M, correspond to L = 1
with no states left over, so that only P terms occur. Each triplet spin factor combines with
each one of the three antisymmetric space factors to give the nine states of the *P term, and
the singlet spin factor combines with each one of the symmetric space factors to give the
three states of the 'P term.

The states can be counted up more simply by listing all the possible combinations of m,
m,, my,, and m, that can occur, and then marking off enough states for each possible term.
These entries are shown in Table 16.4. The actual states are linear combinations of the
wave functions corresponding to the entries in this list, but the number of them is correctly
counted. The largest values of M, and M are identified, which must be equal to the largest
values of L and S. The states with the appropriate values of M, and M for this term are
marked and then the largest remaining values of M, and M are identified and marked off.
The process is continued until all states have been assigned to terms. In this case, all states
are assigned when the 3P and 'P terms are found.

Exercise 16.19
By explicit operation with L. = L., + izz. shows that the eigenvalues of the two space factors m
Eq. (16,3-58) and Eq. (16.3-39) both equal %, corresponding to M, = 1.

Table 16.4. Terms for the (1s5)(2p) Configuration of the He
Atom for Example 16.8

Values Terms

my > m m, M, M 3p P

0 | +1/2 +1/2 l | 54

0 | +1/2 -1/2 l 0 X

0 | -12 +1/2 1 0 X

0 | - 1/2 -1/2 I =1 X

0 0 +172 +1/2 0 | X

0 0 +1/2 -1/2 0 0 X

0 0 -1/2 +1/2 0 0 X

0 0 —1/2 —1/2 0 —1 X

0 -1 +1/2 +1/2 - | | X

0 -1 +1/2 =172 ~ | 0 X

0 -1 -12 +1/2 -1 0 X
—1/2 -1 -1 X

0 7 | —1/2
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16.4

In order to finish characterizing our electronic states, we can give the values of ./, the
quantum number for the total angular momentum, and M, the quantum number for its -
component. Since J is the sum of L and S,

J,=L.+38. (16.3-60)

>

Therefore,
MJ =ML+MS (1().3-(‘“

The possible values of J can be deduced by using the rule that for each value of /, the
values of M, range from +J to —J. Since the largest value of M, equals the larges!
value of M, plus the largest value of M;, the largest value of J is

‘jmax =L+S5 (16.3-62)
The smallest value of J is
min = IL — S| (16.3-63)

J must be nonnegative.

*Exercise 16.20
Tabulate the M, and M values of the 12 states of Example 16.8. Show that the following terms
occur:

' By R YR

Hint: Use the list of quantum numbers in Table 16.4 and assign values of M. The largest value of
M; is equal to the largest value of J. Assign the states to the different values of / in the same way
as was done in Example 16.8 with L and §.

Atoms with More Than Two Electrons

Our discussion of larger atoms will be similar to that of the helium atom, neglecting the
electron-electron repulsion. In Chapter 17 we will describe the approximate inclusion
of this repulsion.

The Lithium Atom in Zero Order

A lithium atom has three electrons and a nucleus with three protons. The Hamiltonian
operator for a lithium atom with stationary nucleus is

" H2
A = —ﬂ(vf +Vi+V3)
1 3?2 32 3.2 L2 2 22
Yo | o e e (16.4-1)
ey A Tz ] Mg T3, Py

As in the helium atom treatment, the zero-order Hamiltonian omits the electron-
electron repulsion terms, giving

HO =B () + B )+ B 13) (16.4-2)
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where the hydrogenlike Hamiltonians correspond to Z = 3. The zero-order approxima-
tion always leads to a wave function that is a product of orbitals:

PO = (D, (2)95(3) (16.4-3)

The three orbitals are hydrogenlike orbitals with Z = 3, so that the zero-order wave
function without antisymmetrization but with inclusion of spin is

0 ,
lp( : = llbml’mmn” (1)wﬂzlrznf:i”‘:(2)¢!ljl;f”;”i‘}(3) (16.4-4)

The subscripts on the subscripts indicate the fact that the quantum numbers do not
necessarily have the same value for each orbital.

The electronic energy of the atom is the sum of three hydrogenlike energy
eigenvalues with Z = 3. From Eq. (16.2-19),

P =E9  =E (HL)+E

Hykany n s

(HL) + £, (HL)

® ¢ 3
2_(]3.603\/)(;1'5**“;?‘{‘;3) ﬁl(\.4-5)
1 My M

Exercise 16.21
Carry out the steps to obtain Eqgs. (16.4-4) and (16.4-5).

Antisymmetrization

The orbital wave function of Eq. (16.4-4) can be antisymmetrized by including one term
corresponding to each possible order of the orbital labels for a fixed order of particle
labels. Each term that is generated from the first term by one permutation of a pair of
indexes has a negative sign, and each term that is generated by two permutations of
pairs of indexes has a positive sign. The antisymmetrized function is

1
¥ = 2 [ D053) = (1 @33) = i (Dh320 )
= Y3 (29, (3) + s (DY (20, (3) + Y (D3 (29, (3)] (16.4-6)
where we abbreviate the quantum numbers by writing 1 instead of n,, /|, m,, m,,, eic,

Exercise 16.22

Show that the function produced by exchanging particle labels 1 and 3 in Eq. (16.4-6) is the
negative of the original function. Choose another permutation and show the same thing.
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The Slater determinant is named after
John C. Slater, 19001976, a
prominent American physicist who
made various contributions to atomic
and molecular quantum theory.

If a spin orbital occurs more than once in each term in the wave function. the wae
function vanishes (this is the Pauli exclusion principle).

EXAMPLE 16.9
If orbitals /) and 1/, are the same function, show that the wave function of Eq. (16.4-6)
vanishes.

Solution

W= %[w.uwmwn — U@ B) = by (D QW (3)

= 1Y) + ¥ (DY (20, 3) + Yo (1Y, 20 (3)]
=0

Exercise 16.23
Show that the wave function of Eq. (16.4-6) is normalized if the orbitals are normalized and
orthogonal to each other. The normalization integral is an integral over the coordinates of all three
electrons. Each term will factor, but there will be 36 terms. Look for a way to write down the
result of integrating cach term without having to write all of the integrands, using the
orthogonality and normalization of the orbitals.

Slater Determinants

There 1s another notation that can be used to write the antisymmetrized wave function
of Eq. (16.4-6). A determinant is a quantity derived from a square matrix by a certain
set of multiplications, additions and subtractions. If the elements of the matrix are
constants, the determinant is equal to a single constant. If the elements of the matrix are
orbitals, the determinant of that matrix is a single function of the coordinates on which
the orbitals depend. The wave function of Eq. (16.4-6) is equal to the determinant;

v() 6@ v,06)
Y=—7y(1) ¥:(2) ¥,(3) (16.4-7)
VBui(1) 4@ i)

which is called a Slater determinant. There is a brief introduction to matrices and
determinants in Appendix B.

Exercise 16.24
Use the rule of Eq. (B-89) of Appendix B for expanding a three-by-three determinant to show that
the function of Eq. (16.4-7) is the same as that of Eq. (16.4-6):

Two properties of determinants presented in Appendix B relate to the properties of
antisymmetrized orbital wave functions:

I. If one exchanges two columns or two rows of a determinant, the resulting
determinant is the negative of the original determinant. Exchanging the locations
of two particles is equivalent to exchanging two columns, so that the Slater
determinant exhibits the necessary antisymmetry.
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2. If two rows or two columns of a determinant are identical, the determinant vanishes.
[f two electrons occupy identical spin orbitals, two rows of the determinant in Eq.
(16.4-7) are identical, and the determinant vanishes, in agreement with the Pauli
exclusion principle.

For the ground state, we must choose three different spin orbitals with the minimum
possible sum of orbital energies, since the zero-order energy is equal to the sum of the
orbital energies. This practice of choosing the ground-state configuration with the
minimum sum of orbital energies is called the Aufbau principle, from the German
word for “building-up”. For the lithium atom, we choose the two ls spin orbitals and
one spin orbital from the second shell. In zero order, all of the 2s and 2p orbitals have
the same energy, but we anticipate the fact that higher-order calculations will give a
lower energy for the 2s subshell than for the 2p subshell and choose one of the 25 spin
orbitals. The zero-order energy of the ground state is, from Eq. (16.2-21),

EY) = E\)\, = 2B,(HL) + E;(HL)
¥ 3 ) _
= (—13.60eV) 2T5+7_2 =-2754¢eV (16.4-8)

This value is seriously in error, as was the zero-order value for helium. It differs from
the experimental value of — 203.5eV by 35%.
The antisymmetrized zero-order wave function can be written

| VsMa) ¥ (2)22) §,(3)2(3)
YO = — g (D) ¥ ,(B2) ¥, (3)BB) (16.4-9)
Yos(a(1)  h5(2)22) Yy (3)2(3)

The 2s-spin-down orbital could have been chosen instead of the 2s-spin-up orbital. We
therefore have two states of equal energy instead of a single ground state. This doubly
degenerate ground level corresponds to § = 1/2 (a doublet term), since the possible
values of My are +1/2 and — 1 /2. Since M, = 0, the value of L is 0, the only value of J
is 1/2, and the ground term symbol of lithium is 25 .

Excited states of the lithium atom can correspond to various choices of orbitals. The
values of M; and M for these excited states can be calculated by algebraic addition
Using the rules that M, ranges from +L to —L and that M ranges from +S to —S. one
can deduce the values of L and § that occur and can assign term symbols. Higher-order
calculations must be used to determine the order of the energies of the excited states.

Exercise 16.25

Consider the excited-state configuration (1s)(2s)(3s) for a lithium atom.
a. Show that quartet states with S = 3/2 can occur.

*b. Write the term symbols for all terms that occur.

*¢. Find the zero-order energy eigenvalue for this configuration.

Atoms with More Than Three Electrons

The treatment of the other atoms in zero order is similar to the helium and lithium
treatments. For an atom with atomic number Z (Z protons in the nucleus and 7
electrons), the stationary-nucleus Hamiltonian operator is

5 . s - % s o
ﬁ- / 2 Z(» / I 2~ Z '“‘l I

~ I
H=-—% V- — e — 16.4-10)
2m 5 dmeyimir 4dne ,; 7,2;, rij (
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where 7; is the distance from the nucleus to the ith electron and r;; 18 the distance from
the ith electron to the jth electron.

The first two sums in Eq. (16.4-10) are a sum of hydrogenlike one-electron
Hamiltonian operators, and the double sum is a sum of terms like those that we have
neglected with helium and lithium. The zero-order Hamiltonian operator 1s sum of
hydrogenlike Hamiltonians (with those terms neglected):

. Z
HO = 5 g4 () (16.4-11)
=1

The time-dependent Schrodinger equation corresponding to this Hamiltonian can be
solved by separation of variables, using the trial function

b |

PO = (D3 BWa(4) -y (2) =

i

W (i) (16.4-12)
|

where the symbol [ stands for a product of factors, just as the > symbol stands for a
sum of terms. Since the terms in the zero-order Hamiltonian are hydrogenlike
Hamiltonians, the factors v, (1), ,(2), ¥5(3), ete. are all hydrogenlike orbitals and
the energy eigenvalue is a sum of hydrogenlike orbital energies:

U’};(I) = wn,!,m,m”(‘,‘) (16.4-13)

~N

!

EO E,(HL)+E, (HL) +..- = E, (HL) (16.4-14)
! 1

where n;, [, etc., are values of the quantum numbers for hydrogenlike orbitals. Just as
with the helium and lithium atoms, the zero-order wave functions and energles of Eqs.
(16.4-13) and (16.4-14) are very poor approximations.

We must antisymmetrize the orbital wave function of Eq. (16.4-12). This can be done
by writing a Slater determinant with one row for each spin orbital and one column for
each electron:

i) i@ 0 @) g (2)

Yo(1) lv//z(?-) !/’2(3} lf’z(4) e h(2)

g L) Y52) 4sB) w4 - Ys(2)
VZU VL) ¥a(2) () Y@ - gu(2)

o (1) Ya(2) W2(3) Yy4) - Yi(Z)|

where the I/JZT factor normalizes the wave function, assuming that all orbitals are
normalized and orthogonal to each other, and where we have abbreviated the quantum
numbers. The Pauli exclusion principle must be followed. No two spin orbitals can be
the same, or two rows of the determinant would be identical, causing the wave function
to vanish.

The values of M, Mg, L, and § can be computed in the same way as with the helium
and lithium atoms. The computation can be simplified by noting that the contributions
to M; and M for any completely filled subshell vanish. For example, the only term
symbol that occurs for the ground state of an inert gas (He, Ne, Ar, etc.)is 'S. Since the
hydrogenlike orbitals in the same shell all have the same energy, many of the terms are
degenerate in zero order, but will have different energies when better approximations
are used.

In the next chapter, we will discuss approximations beyond the zero-order approx-
imation that will give better values of atomic energies, We will usually use the orbital

(16.4-15)
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approximation. We will find that the orbitals in different subshells in the same shell do
not correspond to the same energy, and will use the facts about the orbital energies to
understand the periodic chart of the elements.

Summary of the Chapter

The time-independent Schrodinger equation for a general two-particle central-force
system was separated into a one-particle Schrddinger equation for the motion of the
center of mass of the two particles, and a one-particle Schrédinger equation for the
motion of one particle relative to the other.

The Schrodinger equation for the relative motion was solved by separation of
variables in spherical polar coordinates, assuming the trial function

lpnhn(r’ U’ Cb) == 'th'(r) Yfm(()’ d)) = Rn.’(".)ca.‘m(e)q)m((pJ

The angular functions Y, (0, ¢) are a set of functions called spherical harmonic
functions. These functions are also eigenfunctions of the operator for the square of
the orbital angular momentum and its z component, with eigenvalues given by

z‘z Ylm =hll + I)Yhn
and
i: Y!m = fim Y{m

The solution to the equation for the radial factor R(r) was presented for the hydrogen
atom, giving a set of wave functions with two quantum numbers: n, the principal
quantum number, and /, the same quantum number as in the spherical harmonic
functions. The hydrogenlike atom was defined, with a single electron, but with Z
protons in the nucleus. The energy eigenvalues of the hydrogenlike atom depend only
on the principal quantum number:;

(13.60eV)Z?

E=FE = —
2

h

where Z was the number of protons in the nucleus.

An intrinsic electronic angular momentum of the electron was introduced. This
angular momentum corresponds to a spinning motion of the electron in addition to its
orbital motion. It corresponds to fixed magnitude and two possible z projections, #/2
and —#/2.

In the “zero-order™ approximation, the repulsions between electrons were neglected.
The energy eigenfunctions of the helium atom were products of one hydrogenlike
orbital for each electron. These orbital wave functions were antisymmetrized to
conform to the physical indistinguishability of the electrons, producing the Pauli
exclusion principle, which states that no two electrons can occupy the same orbital
in any orbital wave function. Similar wave functions were discussed for multielectron
atoms. By utilizing the Pauli exclusion principle, possible electron configurations and
term symbols can be computed.



